192 research outputs found

    Implementation of advanced practice nursing for minor orthopedic injuries in the emergency care context – a non-inferiority study

    Get PDF
    Aims To evaluate the implementation of advanced practice nursing for patients with minor orthopedic injuries, including comparison of outcomes in relation to advanced practice nurse versus standard (physician-led) care models. Design A non-inferiority study was performed in an emergency department in Norway, where advanced practice nursing is in an initial stage of implementation. The non-inferiority design was chosen to test whether the new advanced practice nursing model does not compromise quality of care compared to the standard care model already in use. Methods Patients with minor orthopedic injuries were assessed and treated by either advanced practice nursing or standard (physician-led) care models. Participating patients were assigned to the professional available at presentation. In the nursing model, registered nurses worked at an advanced level/applied advanced practice nursing following in-house-training. Senior orthopedic specialists evaluated the diagnostic and treatment accuracy in both models. Data were collected in a tool developed for this study, from May to October, 2019. Results In total, 335 cases were included, of which 167 (49.9 %) were assessed and treated in the nursing model. Overall, correct diagnosis was found in 97.3 % (n = 326) of the cases, and correct treatment was found in 91.3 % (n = 306) of the cases. In comparison of missed diagnosis between advanced practice nurse and the standard (physician-led) care model showed inconclusive results (risk ratio: 0.29, 95% CI: 0.06-1.36). In comparison of treatment outcomes, the results showed that the advanced practice nursing model was non-inferior (risk ratio: 0.45, 95% CI: 0.21-0.97). Conclusion Advanced practice nursing care models can be used to diagnose and treat minor orthopedic injuries without compromising quality of care. Further implementation of the advanced practice nurse care model is encouraged

    Conclusione

    Get PDF

    Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression

    Get PDF
    Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.Peer reviewe

    Novel RET agonist for the treatment of experimental neuropathies

    Get PDF
    The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.Peer reviewe

    Spared Nerve Injury Causes Sexually Dimorphic Mechanical Allodynia and Differential Gene Expression in Spinal Cords and Dorsal Root Ganglia in Rats

    Get PDF
    Neuropathic pain is more prevalent in women. However, females are under-represented in animal experiments, and the mechanisms of sex differences remain inadequately understood. We used the spared nerve injury (SNI) model in rats to characterize sex differences in pain behaviour, unbiased RNA-Seq and proteomics to study the mechanisms. Male and female rats were subjected to SNI- and sham-surgery. Mechanical and cold allodynia were assessed. Ipsilateral lumbar dorsal root ganglia (DRG) and spinal cord (SC) segments were collected for RNA-seq analysis with DESeq2 on Day 7. Cerebrospinal fluid (CSF) samples for proteomic analysis and DRGs and SCs for analysis of IB-4 and CGRP, and IBA1 and GFAP, respectively, were collected on Day 21. Females developed stronger mechanical allodynia. There were no differences between the sexes in CGRP and IB-4 in the DRG or glial cell markers in the SC. No CSF protein showed change following SNI. DRG and SC showed abundant changes in gene expression. Sexually dimorphic responses were found in genes related to T-cells (cd28, ctla4, cd274, cd4, prf1), other immunological responses (dpp4, c5a, cxcr2 and il1b), neuronal transmission (hrh3, thbs4, chrna4 and pdyn), plasticity (atf3, c1qc and reg3b), and others (bhlhe22, mcpt1l, trpv6). We observed significantly stronger mechanical allodynia in females and numerous sexually dimorphic changes in gene expression following SNI in rats. Several genes have previously been linked to NP, while some are novel. Our results suggest gene targets for further studies in the development of new, possibly sex-specific, therapies for NP.Peer reviewe

    A digital waveguide-based approach for Clavinet modeling and synthesis

    Get PDF
    The Clavinet is an electromechanical musical instrument produced in the mid-twentieth century. As is the case for other vintage instruments, it is subject to aging and requires great effort to be maintained or restored. This paper reports analyses conducted on a Hohner Clavinet D6 and proposes a computational model to faithfully reproduce the Clavinet sound in real time, from tone generation to the emulation of the electronic components. The string excitation signal model is physically inspired and represents a cheap solution in terms of both computational resources and especially memory requirements (compared, e.g., to sample playback systems). Pickups and amplifier models have been implemented which enhance the natural character of the sound with respect to previous work. A model has been implemented on a real-time software platform, Pure Data, capable of a 10-voice polyphony with low latency on an embedded device. Finally, subjective listening tests conducted using the current model are compared to previous tests showing slightly improved results

    Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance

    Get PDF
    Development of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal-and supraspinal regions. Chronic morphine treatment that induced tolerance and hyperalgesia also increased immunoreactivity of spinal microglia in the dorsal and ventral horns. Flow cytometry demonstrated that morphine treatment increased the proportion of M2-polarized spinal microglia, but failed to impact the number or the proportion of M1-polarized microglia. In the transcriptome of microglial cells isolated from the spinal cord (SC), morphine treatment increased transcripts related to cell activation and defense response. In the studied brain regions, no activation of microglia or astrocytes was detected by immunohistochemistry, except for a decrease in the number of microglial cells in the substantia nigra. In flow cytometry, morphine caused a decrease in the number of microglial cells in the medulla, but otherwise no change was detected for the count or the proportion of M1-and M2-polarized microglia in the medulla or sensory cortex. No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine

    Get PDF
    The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.Peer reviewe

    Change in brain amyloid load and cognition in patients with amnestic mild cognitive impairment: a 3-year follow-up study

    Get PDF
    Background Our aim was to investigate the discriminative value of F-18-Flutemetamol PET in longitudinal assessment of amyloid beta accumulation in amnestic mild cognitive impairment (aMCI) patients, in relation to longitudinal cognitive changes. Methods We investigated the change in F-18-Flutemetamol uptake and cognitive impairment in aMCI patients over time up to 3 years which enabled us to investigate possible association between changes in brain amyloid load and cognition over time. Thirty-four patients with aMCI (mean age 73.4 years, SD 6.6) were examined with F-18-Flutemetamol PET scan, brain MRI and cognitive tests at baseline and after 3-year follow-up or earlier if the patient had converted to Alzheimer ' s disease (AD). F-18-Flutemetamol data were analyzed both with automated region-of-interest analysis and voxel-based statistical parametric mapping. Results F-18-flutemetamol uptake increased during the follow-up, and the increase was significantly higher in patients who were amyloid positive at baseline as compared to the amyloid-negative ones. At follow-up, there was a significant association between F-18-Flutemetamol uptake and MMSE, logical memory I (immediate recall), logical memory II (delayed recall) and verbal fluency. An association was seen between the increase in F-18-Flutemetamol uptake and decline in MMSE and logical memory I scores. Conclusions In the early phase of aMCI, presence of amyloid pathology at baseline strongly predicted amyloid accumulation during follow-up, which was further paralleled by cognitive declines. Inversely, some of our patients remained amyloid negative also at the end of the study without significant change in F-18-Flutemetamol uptake or cognition. Future studies with longer follow-up are needed to distinguish whether the underlying pathophysiology of aMCI in such patients is other than AD.</p
    • 

    corecore